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1 PROBLEM ANDMOTIVATION
Substructural type systems [15], which restrict the use of weakening and contraction rules from

intuitionistic logic, are growing in popularity because they allow for a resourceful interpretation of

data which can be used to rule out various software bugs. Indeed, substructurality is finally taking

hold in modern programming; Haskell now has linear types as of GHC 9.0.1 [2] which are roughly

based on Girard’s linear logic [6] but integrated via graded function arrows, Clean has uniqueness

types designed to ensure that values have at most a single reference to them [5, 11], and Rust offers

an intricate ownership system for guaranteeing memory safety [9].

But despite this broad range of resourceful type systems, there is comparatively little under-

standing of their relative strengths and weaknesses. In particular, are linearity and uniqueness

essentially the same thing, are they somehow ‘dual’ to one another, or is the truth somewhere

in between? This work formalises the relationship between these two well-studied but rarely

contrasted ideas, building on two distinct bodies of literature, and clearing up the confusion to

answer these questions once and for all. We show that it is possible and advantageous to track the

usage of resourceful data through linearity and also safely mutate values with unique references,

by having both linear and unique types together in one unified system.

Furthermore, we study the guarantees provided by the resulting calculus and develop a practical

implementation in the graded modal setting of the Granule language [10], adding a third kind of

modality alongside coeffect and effect modalities. In future work, we will go on to discuss how

just as Granule’s coeffect system can allow for more fine-grained quantitative reasoning about

resource usage, we can track references more precisely through a graded system based on fractional

permissions [3], which links closely to the notion of ownership à la Rust.

2 BACKGROUND AND RELATEDWORK
Reading the literature one might get the impression that linear types and uniqueness types are

two names for the same concept, perhaps separated only by some minor implementational details.

Indeed, the section on substructural type systems in Advanced Topics in Types and Programming
Languages [15] describes uniqueness types as “a variant of linear types”. But reading a different set

of papers might give the contrasting impression that linearity and uniqueness are in some sense

“dual” to one another, and so have considerably different behaviour for at least some applications.

A recent publication on linear types for Haskell [2] describes the two concepts as being “at their
core, dual”, though this is later clarified to be only a “weak duality”.

It is clear, at least, that both linear types and uniqueness types are substructural type systems, in

that they both restrict the application of the structural rules (contraction and weakening, and in

other settings possibly exchange) found in type systems that are the Curry-Howard counterparts

to regular intuitionistic logic. This captures the well-known maxim that “not all things in life are
free” [14]; many kinds of data behave resourcefully, and are subject to constraints on their usage.

Sensitive data should not be infinitely duplicated and passed around freely, file handles should not
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be arbitarily discarded without being properly closed, and array references should not be shared

and allowed to be mutated while still in use, to name a few!

Linearity and uniqueness remain indistinguishable, however, until we introduce unrestricted
values which do allow for contraction and weakening. Intuitively, if it is never possible to duplicate

any value (so all values are linear), then it is also not possible for a value to have multiple references

(so all values are unique) [12, 13]. Offering the capability to move between substructural and

Cartesian (unrestricted) values is when differences between linear and unique types begin to arise

[6, 7], as we shall now see when we describe how to represent both in a single type system.

3 APPROACH AND NOVELTY
The type system we will define, which we call the Linear-Cartesian-Unique calculus, builds on

(intuitionistic multiplicative exponential) linear logic as its basis, with additional rules for a new

uniqueness modality inspired by Harrington’s uniqueness logic [7].

Values wrapped in the comonadic ! modality from linear logic can be extracted to retrieve a

linear value, but once a value is restricted to behave linearly, we cannot remove this restriction.

Thus, values with a linear type must be used exactly once, and cannot be duplicated or discarded.

This makes them useful for data like file handles, since they cannot be copied and must be properly

closed rather than simply thrown away.

In contrast, Harrington’s uniqueness logic offers a monadic ‘non-unique’ modality ◦, and so our

knowledge about a unique value is slightly different. We cannot say that a unique value will never

be duplicated, since we can apply the ‘return’ of the monad to obtain a non-unique value which

we may use freely. But unlike with a linear value we can guarantee that a unique value has never

been duplicated previously, since it is not possible to escape the non-uniqueness monad. Hence

uniqueness types are more useful for data such as mutable arrays, since we must guarantee our

reference to the array is unique in order to safely mutate it in memory.

For our unified calculus, the crucial insight is that we can treat non-linearity and non-uniqueness
as the same state, both represented by the !modality (pronounced “bang”), since both cases allow for

unrestricted behaviour with no guarantees about the past or restrictions on the future. Linear types

are the basis of the calculus and behave according to the usual rules. We introduce a ∗ modality

(pronounced “star”, with syntax intended to be familiar to users of Clean) to represent unique

values, with the important rules for this modality’s behaviour given below.

Γ ⊢ 𝑡 : ∗𝐴
Γ ⊢ &𝑡 : !𝐴

Borrow

Γ1 ⊢ 𝑡1 : !𝐴 Γ2, 𝑥 : ∗𝐴 ⊢ 𝑡2 : !𝐵
Γ1 + Γ2 ⊢ copy 𝑡1 as 𝑥 in 𝑡2 : !𝐵

Copy

∅ ⊢ 𝑡 : 𝐴
[Γ] ⊢ ∗𝑡 : ∗𝐴

Nec

The Borrow rule
1
maps a unique value to a non-linear one, allowing a guarantee of uniqueness

to be forgotten just as we expect. The Copy rule says that a non-linear value can be copied to

produce a unique one which can be used internally; the input is required to be non-linear so that

we cannot circumvent a linearity restriction by copying a linear value, and the output is required to

be non-unique so that we cannot leverage our temporary uniqueness to smuggle out a value which

we can continue to use uniquely outside the context of the Copy. (These rules are accompanied by

a necessitation rule, allowing values to be unique by default as long as they have no dependencies.)

Note that these two rules suggest a certain relationship between the two modalities in our

calculus; if we ignore the presence of the ∗modality, we see that ! acts much like a monad (similarly

to ◦), with the Borrow rule having the shape of a monadic ‘return’ and the Copy rule acting as the

1
The name Borrow is intended to evoke the concept of borrowing as in Rust, and in particular an immutable borrow, where
a value can no longer be mutated while it is being shared [16]. Representing mutable borrows which only temporarily

invalidate the original unique reference would require more fine-grained fractional tracking of how widely references have

been shared, which is future work.



Linearity, Uniqueness, Ownership: An Entente Cordiale 3

‘bind’. Formally, ∗ is a functor over which ! becomes a relative monad [1]. Indeed, the following

equalities hold on the uniqueness fragment of the calculus, which are exactly the required axioms:

copy 𝑡 as 𝑥 in &𝑥 ≡ 𝑡 copy &𝑡 as 𝑥 in 𝑡 ′ ≡ [𝑡/𝑥]𝑡 ′ (unit laws)

copy 𝑡1 as 𝑥 in (copy 𝑡2 as 𝑦 in 𝑡3) ≡ copy (copy 𝑡1 as 𝑥 in 𝑡2) as 𝑦 in 𝑡3 (𝑥#𝑡3) (associativity)

The implementation of uniqueness types in Granule follows much the same pattern as the rules

from the calculus. Granule already possesses a semiring graded necessity modality, where for a
pre-ordered semiring (R, ∗, 1, +, 0, ⊑), there is a family of types {□𝐴𝑟 }𝑟 ∈R . We represent the ! from

linear logic (and our extended calculus) via the pre-ordered semiring {0, 1, 𝜔}2 with !𝐴 = □𝐴𝜔 . This

semiring allows us to represent both linear and non-linear use via grades of 1 and 𝜔 .

Our implementation provides the uniqueness modality ∗ as in the calculus, which wraps a value

that behaves substructurally as with linear values; the key difference is that we provide operations

with syntactic sugar corresponding to the calculus, allowing ! to act monadically over unique values.

A simple example of linear and unique types in action follows, to demonstrate the idea.

Granule

1 desire : !Cake → (Cake, Happy)

2 desire lots = let !cake = lots in (have cake, eat cake)

3

4 sip : *Coffee → (!Coffee, Awake)

5 sip fresh = let !coffee = &fresh in ([keep coffee], drink coffee)

In the first example, we are only able to have our cake and eat it too because the cake is non-linear ;
eliminating the ! modality gives us access to an unrestricted variable representing an unlimited

amount of cake. The second example shows that borrowing (&) can convert a unique cup of coffee

into an unrestricted one, so that it can be duplicated and used twice for the two separate functions.

Note however that the uniqueness guarantee is lost in the process, so both of the output values are

non-unique (though they may or may not be linear). We can continue to sip our unrestricted coffee

as many times as we like, but we cannot try to pretend that it is still fresh after the first sip!

We also provide an interface for unique arrays of floating point numbers in Granule, offering

primitives for creating, reading from, writing to, calculating the length of, and dereferencing arrays.

Note that it is possible for our writeFloatArray primitive to update an array destructively in place

since we have a guarantee that no other references exist to the array which has been passed in;

this set of primitives allows us to evaluate the performance of our implementation, by measuring

the performance gains from allowing for in-place updates.

4 RESULTS AND CONTRIBUTIONS
We formalise the relationship between linearity and uniqueness, and prove key properties for

both resource conservation and uniqueness preservation, building a theoretical underpinning

for a unified system of substructural types. This is the first step on the road towards properly

understanding the relationships between more advanced substructural type systems, such as the

fine-grained resource tracking of languages like Granule [10] and Idris [4] and the complex memory

management provided by Rust [16]. Moreover, we have implemented this system in the graded

modal setting of the Granule language, and have also carried out benchmarks to demonstrate the

efficiency gains offered by making use of unique mutable arrays in Granule programs. It is apparent

that incorporating uniqueness types into languages outside of Granule, such as via adding a new

flavour of multiplicity to Haskell’s linear type system [2], has the potential to offer similar benefits.

2
It may not seem obvious that this modality does exactly represent the behaviour of !, and in fact capturing linear exponentials

precisely does require some additional semiring structure which is present in Granule; this is discussed further in [8].
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