
 A Hitchhiker’s

 Guide to Linearity

DANIEL MARSHALL

a Lambda Days talk

…and uniqueness
…and ownership…

Some data is unrestricted.
but…

some data is resourceful.

infinitely copiable

arbitrarily discardable

universally mutable
2/20

Linear types are like cakes.
You can only eat them once.

You have to eat them.

 {-# LANGUAGE LinearTypes #-}

desire :: Cake (Happy, Cake)

 desire cake = (eat cake, have cake)

⊸

3/20

Linearity in Granule!

4/20

In practice (file handles)

desire : !Cake -> (Happy, !Cake)

 desire lots = let !cake = lots in

 (eat cake, [have cake])

linear : Char <IO>

linear = let

 h <- openHandle ReadMode “towel.md”;

 (h’, c) <- readChar h

 in pure c

Linearity in Granule!

4/20

In practice (file handles)

desire : !Cake -> (Happy, !Cake)

 desire lots = let !cake = lots in

 (eat cake, [have cake])

linear : Char <IO>

linear = let

 h <- openHandle ReadMode “towel.md”;

 (h’, c) <- readChar h;

 () <- closeHandle h’

 in pure c

Unique types are like coffee.
A fresh coffee has just been poured.

We can sip our coffee, but…

then it is no longer fresh!

 share :: *Coffee -> (Awake, *Coffee)

 share coffee = (drink coffee, keep coffee)

5/20

“But what’s the difference?”

Linear types restrict a value from ever being

duplicated (or discarded) in the future.

Unique types guarantee that a value has

never been duplicated in the past.

6/20

A history of linearity and uniqueness (abridged)

7/20

Theory

Practice

Linear logic

Girard (1987)

Linear types can

change the world!

Wadler (1990)

Linear Haskell: Practical

linearity in a higher-order

polymorphic language

Bernardy, Boespflug, Newton,

Peyton Jones, Spiwack (2018)

Guaranteeing safe destructive

updates through a type system with

uniqueness information for graphs

Smetsers, Barendsen,

van Eekelen, Plasmeijer (1994)

Uniqueness logic

Harrington (2006)

Uniqueness typing simplified

de Vries, Plasmeijer,

Abrahamson (2008)

Uniqueness logic

8/20

Structural rules are restricted, as in linear logic…

…and the ○ modality allows for discarding and

 duplication, as with ! from linear logic.

!a aa a○
Unique Cartesian Linear

“How can we use both?”

Linear values as the base. Linear a

Unique

!a Cartesian

*a
sharing

dereliction

Cartesian values under a

comonadic ! modality.

Unique values under an

additional * modality.

9/20

(Unit laws and

associativity hold!)

The ! modality acts as a

relative monad over *.

10/20

 share : ∀ {a : Type}

 . *a -> !a

 clone : ∀ {a b : Type}

 . !a -> (*a -> !b) -> !b

 return :: Monad m => a -> m a

 bind :: Monad m => m a -> (a -> m b) -> m b

“And how does this work in practice?”

• Already has a linear base.

• Already represents ! as a coeffect modality (dual to effects).

• Represent * as a third flavour of modality (called a guarantee).

Download and play!

 sip : *Coffee -> (Awake, !Coffee)

 sip fresh = let !coffee = share fresh in (drink coffee, [keep coffee])

https://granule-project.github.io

11/20

https://granule-project.github.io

12/20

Uniqueness in Granule (mutable arrays)

unique : (Float, *FloatArray)

unique = let

 a = newFloatArray 3;

 a’ = writeFloatArray a 1 4.2

 in readFloatArray a’ 1

a’
0.0 4.2 0.0

0 1 2

mutated

in place!

12/20

Uniqueness in Granule (immutable arrays)

unique : (Float, FloatArray)

unique = let

 a = newFloatArrayI 3;

 a’ = writeFloatArrayI a 1 4.2

 in readFloatArrayI a’ 1

0.0 0.0 0.0

0 1 2

a
0.0 4.2 0.0

0 1 2

a’

12/20

Uniqueness in Granule (mix and match)

unique : (Float, FloatArray)

unique = let

 a = newFloatArray 3;

 a’ = writeFloatArray a 1 4.2;

 !a’’ = share a’

 in readFloatArrayI a’’ 1

Ti
m

e
(m

s)

0

175

350

525

700

Iterations

100 200 300 400 500

Ti
m

e
(m

s)

0

50

100

150

200

Iterations

100 200 300 400 500

Overall runtime Garbage collection overhead

What advantages do unique arrays offer?

It’s safe to mutate them in place, so uniqueness gives

us some performance benefits!

13/20

Linear Logic
 modality represents

non-linear usage of
! A

A

Bounded Linear Logic
 family of modalities where

 gives an upper bound on usage
!r A
r

Graded Modal Types
 family of modalities where is

drawn from a pre-ordered semiring

□r A r

generalises to…

generalises to…

14/20

 = A [r]□r A

Graded modal types in action!

15/20

“none, one, tons”

Exact usage

Intervals

desire : Cake [Many] -> (Happy, Cake [Many])

desire : Cake [2] -> (Happy, Cake [1])

desire : ∀ {n : Nat} . Cake [n+1] -> (Happy, Cake [n])

desire : Maybe Cake -> Cake [0..1] -> Happy

desire Nothing [default] = eat default;

desire (Just cake) [default] = eat cake

Then what about ownership?
Ownership can be modelled by capabilities.

Borrowing splits capabilities into fractions.

x y

x
&mut y

y
&x

16/20

Ownership and borrowing in Rust…

17/20

struct Colour(u32, u32, u32);

let granule = Colour(74, 109, 218);

let x = &granule;

let y = &granule; // ok!

let x = &granule;

let y = &mut granule; // error :(

let x = &mut granule;

let y = &mut granule; // error :(

let x = &mut granule;

let y = &mut *x; // ok!

Linear types can be generalised to allow for

quantitative restrictions.

Unique types can be generalised to allow for

fractional guarantees.

!3 a - !2 a x a

*a

(similar to bounded linear logic)

(similar to fractional permissions)
18/20

Ownership in Granule!

mutable

borrow!

immutable

borrows!

reborrowing!

<-> &1 a <-> &1/2 a x &1/2 a <-> &1/4 a x &1/4 a x &1/2 a

19/20

and another thing…

Communication

Security

Session types for

linear communication

Graded session types for

non-linear communication

Confidential data will

never be leaked in the future

Data with integrity has

never been leaked in the past

leak : Recipe [Private]

 -> Recipe [Public]

forge : Recipe [Public]

 -> Recipe *{Trusted}

Thank you for listening!
In summary:

Mutant Standard and Ferris the Rustacean

emoji used under a Creative Commons

BY-NC-SA 4.0 International license!

20/20

@starsandspirals

https://starsandspira.ls

Linearity restricts the future, uniqueness guarantees the past

Quantitative types generalise linear types, offering more precision

Ownership generalises uniqueness, offering more flexibility

Graded types generalise all of the above!
@daniel@types.pl

so long… and thanks for all the fish!

https://starsandspira.ls

