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Some data is unrestricted.
but…

some data is resourceful.

infinitely copiable

arbitrarily discardable

universally mutable
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Linear types are like cakes.
You can only eat them once.

You have to eat them.

 {-# LANGUAGE LinearTypes #-}


desire :: Cake  (Happy, Cake)

 desire cake = (eat cake, have cake)

⊸
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Linearity in Granule!

4/20

In practice (file handles)

desire : !Cake -> (Happy, !Cake)

 desire lots = let !cake = lots in 


        (eat cake, [have cake])

linear : Char <IO>

linear = let

  h       <- openHandle ReadMode “towel.md”;

  (h’, c) <- readChar h

  in pure c




Linearity in Granule!
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In practice (file handles)

desire : !Cake -> (Happy, !Cake)

 desire lots = let !cake = lots in 


        (eat cake, [have cake])

linear : Char <IO>

linear = let

  h       <- openHandle ReadMode “towel.md”;

  (h’, c) <- readChar h;

  ()      <- closeHandle h’

  in pure c




Unique types are like coffee.
A fresh coffee has just been poured.

We can sip our coffee, but…

then it is no longer fresh!

 share :: *Coffee -> (Awake, *Coffee)

 share coffee = (drink coffee, keep coffee)
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“But what’s the difference?”

Linear types restrict a value from ever being

duplicated (or discarded) in the future.

Unique types guarantee that a value has

never been duplicated in the past.

6/20



A history of linearity and uniqueness (abridged)
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Theory

Practice

Linear logic

Girard (1987)

Linear types can 

change the world!

Wadler (1990)

Linear Haskell: Practical

linearity in a higher-order 

polymorphic language

Bernardy, Boespflug, Newton,

Peyton Jones, Spiwack (2018)

Guaranteeing safe destructive 

updates through a type system with 


uniqueness information for graphs

Smetsers, Barendsen, 


van Eekelen, Plasmeijer (1994)

Uniqueness logic

Harrington (2006)

Uniqueness typing simplified

de Vries, Plasmeijer, 


Abrahamson (2008)



Uniqueness logic
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Structural rules are restricted, as in linear logic…

…and the ○ modality allows for discarding and 

        duplication, as with ! from linear logic.

!a aa a○
Unique Cartesian Linear



“How can we use both?”

Linear values as the base. Linear a

Unique

!a Cartesian

*a
sharing

dereliction

Cartesian values under a

comonadic ! modality.


Unique values under an 

additional * modality. 
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(Unit laws and 

associativity hold!)

The ! modality acts as a 

relative monad over *. 
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 share : ∀ {a : Type} 

       . *a -> !a

 clone : ∀ {a b : Type} 

       . !a -> (*a -> !b) -> !b

 return :: Monad m => a -> m a

 bind :: Monad m => m a -> (a -> m b) -> m b



“And how does this work in practice?”

• Already has a linear base.


• Already represents ! as a coeffect modality (dual to effects).


• Represent * as a third flavour of modality (called a guarantee).

Download and play!

 sip : *Coffee -> (Awake, !Coffee)

 sip fresh = let !coffee = share fresh in (drink coffee, [keep coffee])

https://granule-project.github.io
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https://granule-project.github.io
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Uniqueness in Granule (mutable arrays)

unique : (Float, *FloatArray)

unique = let

  a    = newFloatArray 3;

  a’   = writeFloatArray a 1 4.2

  in readFloatArray a’ 1


a’
0.0 4.2 0.0

0 1 2

mutated 

in place!
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Uniqueness in Granule (immutable arrays)

unique : (Float, FloatArray)

unique = let

  a    = newFloatArrayI 3;

  a’   = writeFloatArrayI a 1 4.2

  in readFloatArrayI a’ 1


0.0 0.0 0.0

0 1 2

a
0.0 4.2 0.0

0 1 2

a’
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Uniqueness in Granule (mix and match)

unique : (Float, FloatArray)

unique = let

  a    = newFloatArray 3;

  a’   = writeFloatArray a 1 4.2;

  !a’’ = share a’

  in readFloatArrayI a’’ 1
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Overall runtime Garbage collection overhead

What advantages do unique arrays offer? 

It’s safe to mutate them in place, so uniqueness gives

us some performance benefits!
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Linear Logic
 modality represents 


non-linear usage of 
! A

A

Bounded Linear Logic
 family of modalities where 


 gives an upper bound on usage
!r A
r

Graded Modal Types
 family of modalities where  is


drawn from a pre-ordered semiring

□r A r

generalises to…

generalises to…
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 = A [r]□r A



Graded modal types in action!
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“none, one, tons”

Exact usage

Intervals

desire : Cake [Many] -> (Happy, Cake [Many])


desire : Cake [2] -> (Happy, Cake [1])


desire : ∀ {n : Nat} . Cake [n+1] -> (Happy, Cake [n])


desire : Maybe Cake -> Cake [0..1] -> Happy

desire Nothing     [default] = eat default;

desire (Just cake) [default] = eat cake




Then what about ownership?
Ownership can be modelled by capabilities.

Borrowing splits capabilities into fractions.

x y

x
&mut y

y
&x
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Ownership and borrowing in Rust…
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struct Colour(u32, u32, u32);

let granule = Colour(74, 109, 218);


let x = &granule;

let y = &granule; // ok!


let x = &granule;

let y = &mut granule; // error :(


let x = &mut granule;

let y = &mut granule; // error :(


let x = &mut granule;

let y = &mut *x; // ok!




Linear types can be generalised to allow for 

quantitative restrictions.

Unique types can be generalised to allow for 

fractional guarantees.

!3 a - !2 a x a

*a

(similar to bounded linear logic)

(similar to fractional permissions)
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Ownership in Granule!

mutable 

borrow!

immutable 

borrows!

reborrowing!

<-> &1 a <-> &1/2 a x &1/2 a <-> &1/4 a x &1/4 a x  &1/2 a
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and another thing…

Communication

Security

Session types for

linear communication

Graded session types for

non-linear communication

Confidential data will

never be leaked in the future 

Data with integrity has

never been leaked in the past 

leak : Recipe [Private] 

    -> Recipe [Public]


forge : Recipe [Public] 

     -> Recipe *{Trusted}




Thank you for listening!
In summary:

Mutant Standard and Ferris the Rustacean 

emoji used under a Creative Commons 


BY-NC-SA 4.0 International license!
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@starsandspirals


https://starsandspira.ls

Linearity restricts the future, uniqueness guarantees the past

Quantitative types generalise linear types, offering more precision 

Ownership generalises uniqueness, offering more flexibility 

Graded types generalise all of the above!
@daniel@types.pl


so long… and thanks for all the fish! 

https://starsandspira.ls

